Graph-Based Representation for Multiview Image Geometry
نویسندگان
چکیده
منابع مشابه
Graph-based representation for multiview image coding
In this paper, we propose a new representation for multiview image sets. Our approach relies on graphs to describe geometry information in a compact and controllable way. The links of the graph connect pixels in different images and describe the proximity between pixels in the 3D space. These connections are dependent on the geometry of the scene and provide the right amount of information that...
متن کاملMultiview Navigation based on Extended Layered Depth Image Representation
Emerging applications in multiview streaming look for providing interactive navigation services to video players. The user can ask for information from any viewpoint with a minimum transmission delay. The purpose is to provide user with as much information as possible with least number of redundancies. The recent concept of navigation segment representation consists of regrouping a given number...
متن کاملMultiview Discriminative Geometry Preserving Projection for Image Classification
In many image classification applications, it is common to extract multiple visual features from different views to describe an image. Since different visual features have their own specific statistical properties and discriminative powers for image classification, the conventional solution for multiple view data is to concatenate these feature vectors as a new feature vector. However, this sim...
متن کاملHypergraph-based image retrieval for graph-based representation
In this paper, we introduce a novel method for graph indexing. We propose a hypergraph-based model for graph data sets by allowing cluster overlapping. More precisely, in this representation one graph can be assigned to more than one cluster. Using the concept of the graph median and a given threshold, the proposed algorithm detects automatically the number of classes in the graph database. We ...
متن کاملMultiview Geometry for Camera Networks
Designing computer vision algorithms for camera networks requires an understanding of how images of the same scene from different viewpoints are related. This chapter introduces the basics of multiview geometry in computer vision, including image formation and camera matrices, epipolar geometry and the fundamental matrix, projective transformations, and N -camera geometry. We also discuss featu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Image Processing
سال: 2015
ISSN: 1057-7149,1941-0042
DOI: 10.1109/tip.2015.2400817